Saturday, 25 December 2010

What's new for 'JKB_daily1' in PubMed

This message contains My NCBI what's new results from the National Center for Biotechnology Information (NCBI) at the U.S. National Library of Medicine (NLM).
Do not reply directly to this message.

Sender's message: Sepsis or genomics or altitude: JKB_daily1

Sent on Saturday, 2010 Dec 25
Search (sepsis[MeSH Terms] OR septic shock[MeSH Terms] OR altitude[MeSH Terms] OR genomics[MeSH Terms] OR genetics[MeSH Terms] OR retrotransposons[MeSH Terms] OR macrophage[MeSH Terms]) AND ("2009/8/8"[Publication Date] : "3000"[Publication Date]) AND (("Science"[Journal] OR "Nature"[Journal] OR "The New England journal of medicine"[Journal] OR "Lancet"[Journal] OR "Nature genetics"[Journal] OR "Nature medicine"[Journal]) OR (Hume DA[Author] OR Baillie JK[Author] OR Faulkner, Geoffrey J[Author]))
Click here to view complete results in PubMed. (Results may change over time.)
To unsubscribe from these e-mail updates click here.



PubMed Results
Items 1 - 4 of 4

1. Science. 2010 Dec 10;330(6010):1543-6.

Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism.

Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stüber K, Ver Loren van Themaat E, Brown JK, Butcher SA, Gurr SJ, Lebrun MH, Ridout CJ, Schulze-Lefert P, Talbot NJ, Ahmadinejad N, Ametz C, Barton GR, Benjdia M, Bidzinski P, Bindschedler LV, Both M, Brewer MT, Cadle-Davidson L, Cadle-Davidson MM, Collemare J, Cramer R, Frenkel O, Godfrey D, Harriman J, Hoede C, King BC, Klages S, Kleemann J, Knoll D, Koti PS, Kreplak J, López-Ruiz FJ, Lu X, Maekawa T, Mahanil S, Micali C, Milgroom MG, Montana G, Noir S, O'Connell RJ, Oberhaensli S, Parlange F, Pedersen C, Quesneville H, Reinhardt R, Rott M, Sacristán S, Schmidt SM, Schön M, Skamnioti P, Sommer H, Stephens A, Takahara H, Thordal-Christensen H, Vigouroux M, Wessling R, Wicker T, Panstruga R.

Department of Life Sciences, Imperial College London, London, UK. p.spanu@imperial.ac.uk

Comment in:

Abstract

Powdery mildews are phytopathogens whose growth and reproduction are entirely dependent on living plant cells. The molecular basis of this life-style, obligate biotrophy, remains unknown. We present the genome analysis of barley powdery mildew, Blumeria graminis f.sp. hordei (Blumeria), as well as a comparison with the analysis of two powdery mildews pathogenic on dicotyledonous plants. These genomes display massive retrotransposon proliferation, genome-size expansion, and gene losses. The missing genes encode enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, probably reflecting their redundancy in an exclusively biotrophic life-style. Among the 248 candidate effectors of pathogenesis identified in the Blumeria genome, very few (less than 10) define a core set conserved in all three mildews, suggesting that most effectors represent species-specific adaptations.

PMID: 21148392 [PubMed - indexed for MEDLINE]
Related citations
Click here to read

2. Nature. 2010 Nov 11;468(7321):141-2.

Measuring the meltdown.

Qiu J.
PMID: 21068796 [PubMed - indexed for MEDLINE]
Related citations
Click here to read

3. Nature. 2010 Nov 11;468(7321):134.

Worth waiting for.

[No authors listed]
PMID: 2106878 4 [PubMed - indexed for MEDLINE]
Related citations
Click here to read

4. Nature. 2010 Nov 11;468(7321):321-5. Epub 2010 Oct 20.

Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast.

Pavelka N, Rancati G, Zhu J, Bradford WD, Saraf A, Florens L, Sanderson BW, Hattem GL, Li R.

Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA.

Comment in:

Abstract

Aneuploidy, referring here to genome contents characterized by abnormal numbers of chromosomes, has been associated with developmental defects, cancer and adaptive evolution in experimental organisms. However, it remains unresolved how aneuploidy impacts gene expression and whether aneuploidy could directly bring about phenotypic variation and improved fitness over that of euploid counterparts. Here we show, using quantitative mass spectrometry-based proteomics and phenotypic profiling, that levels of protein expression in aneuploid yeast strains largely scale with chromosome copy numbers, following the same trend as that observed for the transcriptome, and that aneuploidy confers diverse phenotypes. We designed a novel scheme to generate, through random meiotic segregation, 38 stable and fully isogenic aneuploid yeast strains with distinct karyotypes and genome contents between 1N and 3N without involving any genetic selection. Through quantitative growth assays under various conditions or in the presence of a panel of chemotherapeutic or antifungal drugs, we found that some aneuploid strains grew significantly better than euploid control strains under conditions suboptimal for the latter. These results provide strong evidence that aneuploidy directly affects gene expression at both the transcriptome and proteome levels and can generate significant phenotypic variation that could bring about fitness gains under diverse conditions. Our findings suggest that the fitness ranking between euploid and aneuploid cells is dependent on context and karyotype, providing the basis for the notion that aneuploidy can directly underlie phenotypic evolution and cellular adaptation.

PMCID: PMC2978756 [Available on 2011/5/1]
PMID: 20962780 [PubMed - indexed for MEDLINE]
Related citations
Click here to read

Friday, 17 December 2010

What's new for 'JKB_daily1' in PubMed

This message contains My NCBI what's new results from the National Center for Biotechnology Information (NCBI) at the U.S. National Library of Medicine (NLM).
Do not reply directly to this message.

Sender's message: Sepsis or genomics or altitude: JKB_daily1

Sent on Friday, 2010 Dec 17
Search (sepsis[MeSH Terms] OR septic shock[MeSH Terms] OR altitude[MeSH Terms] OR genomics[MeSH Terms] OR genetics[MeSH Terms] OR retrotransposons[MeSH Terms] OR macrophage[MeSH Terms]) AND ("2009/8/8"[Publication Date] : "3000"[Publication Date]) AND (("Science"[Journal] OR "Nature"[Journal] OR "The New England journal of medicine"[Journal] OR "Lancet"[Journal] OR "Nature genetics"[Journal] OR "Nature medicine"[Journal]) OR (Hume DA[Author] OR Baillie JK[Author] OR Faulkner, Geoffrey J[Author]))
Click here to view complete results in PubMed. (Results may change over time.)
To unsubscribe from these e-mail updates click here.



PubMed Results
Item 1 of 1

1. Blood. 2010 Nov 11;116(19):3955-63. Epub 2010 Aug 3.

An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation.

MacDonald KP, Palmer JS, Cronau S, Seppanen E, Olver S, Raffelt NC, Kuns R, Pettit AR, Clouston A, Wainwright B, Branstetter D, Smith J, Paxton RJ, Cerretti DP, Bonham L, Hill GR, Hume DA.

Queensland Institute of Medical Research, Brisbane, Australia.

Abstract

The development of the mononuclear phagocyte system requires macrophage colony-stimulating factor (CSF-1) signaling through the CSF-1 receptor (CSF1R, CD115). We examined the effect of an antibody against CSF1R on macrophage homeostasis and function using the MacGreen transgenic mouse (csf1r-enhanced green fluorescent protein) as a reporter. The administration of a novel CSF1R blocking antibody selectively reduced the CD115(+)Gr-1(neg) monocyte precursor of resident tissue macrophages. CD115(+)Gr-1(+) inflammatory monocytes were correspondingly increased, supporting the view that monocytes are a developmental series. Within tissue, the antibody almost completely depleted resident macrophage populations in the peritoneum, gastrointestinal tract, liver, kidney, and skin, but not in the lung or female reproductive organs. CSF1R blockade reduced the numbers of tumor-associated macrophages in syngeneic tumor models, suggesting that these cells are resident type macrophages. Conversely, it had no effect on inflammatory monocyte recruitment in models, including lipopolysaccharide-induced lung inflammation, wound healing, peritonitis, and severe acute graft-versus-host disease. Depletion of resident tissue macrophages from bone marrow transplantation recipients actually resulted in accelerated pathology and exaggerated donor T-cell activation. The data indicate that CSF1R signaling is required only for the maturation and replacement of resident-type monocytes and tissue macrophages, and is not required for monocyte production or inflammatory function.

PMID: 20682855 [PubMed - indexed for MEDLINE]
Click here to read

Thursday, 16 December 2010

What's new for 'JKB_daily1' in PubMed

This message contains My NCBI what's new results from the National Center for Biotechnology Information (NCBI) at the U.S. National Library of Medicine (NLM).
Do not reply directly to this message.

Sender's message: Sepsis or genomics or altitude: JKB_daily1

Sent on Thursday, 2010 Dec 16
Search (sepsis[MeSH Terms] OR septic shock[MeSH Terms] OR altitude[MeSH Terms] OR genomics[MeSH Terms] OR genetics[MeSH Terms] OR retrotransposons[MeSH Terms] OR macrophage[MeSH Terms]) AND ("2009/8/8"[Publication Date] : "3000"[Publication Date]) AND (("Science"[Journal] OR "Nature"[Journal] OR "The New England journal of medicine"[Journal] OR "Lancet"[Journal] OR "Nature genetics"[Journal] OR "Nature medicine"[Journal]) OR (Hume DA[Author] OR Baillie JK[Author] OR Faulkner, Geoffrey J[Author]))
Click here to view complete results in PubMed. (Results may change over time.)
To unsubscribe from these e-mail updates click here.



PubMed Results
Items 1 - 10 of 10

1. Science. 2010 Nov 19;330(6007):1030-1.

Science and society. GM mosquito trial alarms opponents, strains ties in Gates-funded project.

Enserink M.
PMID: 21097909 [PubMed - indexed for MEDLINE]
Related citations
Click here to read

2. Nature. 2010 Oct 28;467(7319):1138.

Genomics: Seeing more SNPs.

[No authors listed]
PMID: 20981105 [PubMed - indexed for MEDLINE]
Related citations
Click here to read

3. Nature. 2010 Oct 28;467(7319):1136.

Genomics: The tough new variants.

[No authors listed]
PMID: 20981104 [PubMed - indexed for MEDLINE]
Related citations
Click here to read

4. Nature. 2010 Oct 28;467(7319):1135-8.

Genomics: The search for association.

Baker M.
PMID: 20981103 [PubMed - indexed for MEDLINE]
Related citations
Click here to read

5. Nature. 2010 Oct 28;467(7319):1099-103.

Fine-scale recombination rate differences between sexes, populations and individuals.

Kong A, Thorleifsson G, Gudbjartsson DF, Masson G, Sigurdsson A, Jonasdottir A, Walters GB, Jonasdottir A, Gylfason A, Kristinsson KT, Gudjonsson SA, Frigge ML, Helgason A, Thorsteinsdottir U, Stefansson K.

deCODE genetics, Sturlugata 8, 101 Reykjavík, Iceland. kong@decode.is

Abstract

Meiotic recombinations contribute to genetic diversity by yielding new combinations of alleles. Recently, high-resolution recombination maps were inferred from high-density single-nucleotide polymorphism (SNP) data using linkage disequilibrium (LD) patterns that capture historical recombination events. The use of these maps has been demonstrated by the identification of recombination hotspots and associated motifs, and the discovery that the PRDM9 gene affects the proportion of recombinations occurring at hotspots. However, these maps provide no information about individual or sex differences. Moreover, locus-specific demographic factors like natural selection can bias LD-based estimates of recombination rate. Existing genetic maps based on family data avoid these shortcomings, but their resolution is limited by relatively few meioses and a low density of markers. Here we used genome-wide SNP data from 15,257 parent-offspring pairs to construct the first recombination maps based on directly observed recombinations with a resolution that is effective down to 10 kilobases (kb). Comparing male and female maps reveals that about 15% of hotspots in one sex are specific to that sex. Although male recombinations result in more shuffling of exons within genes, female recombinations generate more new combinations of nearby genes. We discover novel associations between recombination characteristics of individuals and variants in the PRDM9 gene and we identify new recombination hotspots. Comparisons of our maps with two LD-based maps inferred from data of HapMap populations of Utah residents with ancestry from northern and western Europe (CEU) and Yoruba in Ibadan, Nigeria (YRI) reveal population differences previously masked by noise and map differences at regions previously described as targets of natural selection.

PMID: 20981099 [PubMed - indexed for MEDLINE]
Related citations
Click here to read

6. Nature. 2010 Oct 28;467(7319):1095-8.

Late middle Eocene epoch of Libya yields earliest known radiation of African anthropoids.

Jaeger JJ, Beard KC, Chaimanee Y, Salem M, Benammi M, Hlal O, Coster P, Bilal AA, Duringer P, Schuster M, Valentin X, Marandat B, Marivaux L, Métais E, Hammuda O, Brunet M.

Institut International de Paléoprimatologie et Paléontologie humaine, Évolution et Paléoenvironnements, CNRS UMR 6046, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers, France. jean-jacques.jaeger@univ-poitiers.fr

Abstract

Reconstructing the early evolutionary history of anthropoid primates is hindered by a lack of consensus on both the timing and biogeography of anthropoid origins. Some prefer an ancient (Cretaceous) origin for anthropoids in Africa or some other Gondwanan landmass, whereas others advocate a more recent (early Cenozoic) origin for anthropoids in Asia, with subsequent dispersal of one or more early anthropoid taxa to Africa. The oldest undoubted African anthropoid primates described so far are three species of the parapithecid Biretia from the late middle Eocene Bir El Ater locality of Algeria and the late Eocene BQ-2 site in the Fayum region of northern Egypt. Here we report the discovery of the oldest known diverse assemblage of African anthropoids from the late middle Eocene Dur At-Talah escarpment in central Libya. The primate assemblage from Dur At-Talah includes diminutive species pertaining to three higher-level anthropoid clades (Afrotarsiidae, Parapithecidae and Oligopithecidae) as well as a small species of the early strepsirhine primate Karanisia. The high taxonomic diversity of anthropoids at Dur At-Talah indicates either a much longer interval of anthropoid evolution in Africa than is currently documented in the fossil record or the nearly synchronous colonization of Africa by multiple anthropoid clades at some time during the middle Eocene epoch.

PMID: 20981098 [PubMed - indexed for MEDLINE]
Related citations
Click here to read

7. Nature. 2010 Oct 28;467(7319):1061-73.

A map of human genome variation from population-scale sequencing.

1000 Genomes Project Consortium, Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA.

Collaborators: Altshuler DL, Durbin RM, Abecasis GR, Bentley DR, Chakravarti A, Clark AG, Collins FS, De La Vega FM, Donnelly P, Egholm M, Flicek P, Gabriel SB, Gibbs RA, Knoppers BM, Lander ES, Lehrach H, Mardis ER, McVean GA, Nickerson DA, Peltonen L, Schafer AJ, Sherry ST, Wang J, Wilson R, Gibbs RA, Deiros D, Metzker M, Muzny D, Reid J, Wheeler D, Wang J, Li J, Jian M, Li G, Li R, Liang H, Tian G, Wang B, Wang J, Wang W, Yang H, Zhang X, Zheng H, Lander ES, Altshuler DL, Ambrogio L, Bloom T, Cibulskis K, Fennell TJ, Gabriel SB, Jaffe DB, Shefler E, Sougnez CL, Bentley DR, Gormley N, Humphray S, Kingsbury Z, Koko-Gonzales P, Stone J, McKernan KJ, Costa GL, Ichikawa JK, Lee CC, Sudbrak R, Lehrach H, Borodina TA, Dahl A, Davydov AN, Marquardt P, Mertes F, Nietfeld W, Rosenstiel P, Schreiber S, Soldatov AV, Timmermann B, Tolzmann M, Egholm M, Affourtit J, Ashworth D, Attiya S, Bachorski M, Buglione E, Burke A, Caprio A, Celone C, Clark S, Conners D, Desany B, Gu L, Guccione L, Kao K, Kebbel A, Knowlton J, Labrecque M, McDade L, Mealmaker C, Minderman M, Nawrocki A, Niazi F, Pareja K, Ramenani R, Riches D, Song W, Turcotte C, Wang S, Mardis ER, Wilson RK, Dooling D, Fulton L, Fulton R, Weinstock G, Durbin RM, Burton J, Carter DM, Churcher C, Coffey A, Cox A, Palotie A, Quail M, Skelly T, Stalker J, Swerdlow HP, Turner D, De Witte A, Giles S, Gibbs RA, Wheeler D, Bainbridge M, Challis D, Sabo A, Yu F, Yu J, Wang J, Fang X, Guo X, Li R, Li Y, Luo R, Tai S, Wu H, Zheng H, Zheng X, Zhou Y, Li G, Wang J, Yang H, Marth GT, Garrison EP, Huang W, Indap A, Kural D, Lee WP, Leong WF, Quinlan AR, Stewart C, Stromberg MP, Ward AN, Wu J, Lee C, Mills RE, Shi X, Daly MJ, DePristo MA, Altshuler DL, Ball AD, Banks E, Bloom T, Browning BL, Cibulskis K, Fennell TJ, Garimella KV, Grossman SR, Handsaker RE, Hanna M, Hartl C, Jaffe DB, Kernytsky AM, Korn JM, Li H, Maguire JR, McCarroll SA, McKenna A, Nemesh JC, Philippakis AA, Poplin RE, Price A, Rivas MA, Sabeti PC, Schaffner SF, Shefler E, Shlyakhter IA, Cooper DN, Ball EV, Mort M, Phillips AD, Stenson PD, Sebat J, Makarov V, Ye K, Yoon SC, Bustamante CD, Clark AG, Boyko A, Degenhardt J, Gravel S, Gutenkunst RN, Kaganovich M, Keinan A, Lacroute P, Ma X, Reynolds A, Clarke L, Flicek P, Cunningham F, Herrero J, Keenen S, Kulesha E, Leinonen R, McLaren WM, Radhakrishnan R, Smith RE, Zalunin V, Zheng-Bradley X, Korbel JO, Stütz AM, Humphray S, Bauer M, Cheetham RK, Cox T, Eberle M, James T, Kahn S, Murray L, Chakravarti A, Ye K, De La Vega FM, Fu Y, Hyland FC, Manning JM, McLaughlin SF, Peckham HE, Sakarya O, Sun YA, Tsung EF, Batzer MA, Konkel MK, Walker JA, Sudbrak R, Albrecht MW, Amstislavskiy VS, Herwig R, Parkhomchuk DV, Sherry ST, Agarwala R, Khouri HM, Morgulis AO, Paschall JE, Phan LD, Rotmistrovsky KE, Sanders RD, Shumway MF, Xiao C, McVean GA, Auton A, Iqbal Z, Lunter G, Marchini JL, Moutsianas L, Myers S, Tumian A, Desany B, Knight J, Winer R, Craig DW, Beckstrom-Sternberg SM, Christoforides A, Kurdoglu AA, Pearson JV, Sinari SA, Tembe WD, Haussler D, Hinrichs AS, Katzman SJ, Kern A, Kuhn RM, Przeworski M, Hernandez RD, Howie B, Kelley JL, Melton SC, Abecasis GR, Li Y, Anderson P, Blackwell T, Chen W, Cookson WO, Ding J, Kang HM, Lathrop M, Liang L, Moffatt MF, Scheet P, Sidore C, Snyder M, Zhan X, Zöllner S, Awadalla P, Casals F, Idaghdour Y, Keebler J, Stone EA, Zilversmit M, Jorde L, Xing J, Eichler EE, Aksay G, Alkan C, Hajirasouliha I, Hormozdiari F, Kidd JM, Sahinalp SC, Sudmant PH, Mardis ER, Chen K, Chinwalla A, Ding L, Koboldt DC, McLellan MD, Dooling D, Weinstock G, Wallis JW, Wendl MC, Zhang Q, Durbin RM, Albers CA, Ayub Q, Balasubramaniam S, Barrett JC, Carter DM, Chen Y, Conrad DF, Danecek P, Dermitzakis ET, Hu M, Huang N, Hurles ME, Jin H, Jostins L, Keane TM, Le SQ, Lindsay S, Long Q, MacArthur DG, Montgomery SB, Parts L, Stalker J, Tyler-Smith C, Walter K, Zhang Y, Gerstein MB, Snyder M, Abyzov A, Balasubramanian S, Bjornson R, Du J, Grubert F, Habegger L, Haraksingh R, Jee J, Khurana E, Lam HY, Leng J, Mu XJ, Urban AE, Zhang Z, Li Y, Luo R, Marth GT, Garrison EP, Kural D, Quinlan AR, Stewart C, Stromberg MP, Ward AN, Wu J, Lee C, Mills RE, Shi X, McCarroll SA, Banks E, DePristo MA, Handsaker RE, Hartl C, Korn JM, Li H, Nemesh JC, Sebat J, Makarov V, Ye K, Yoon SC, Degenhardt J, Kaganovich M, Clarke L, Smith RE, Zheng-Bradley X, Korbel JO, Humphray S, Cheetham RK, Eberle M, Kahn S, Murray L, Ye K, De La Vega FM, Fu Y, Peckham HE, Sun YA, Batzer MA, Konkel MK, Walker JA, Xiao C, Iqbal Z, Desany B, Blackwell T, Snyder M, Xing J, Eichler EE, Aksay G, Alkan C, Hajirasouliha I, Hormozdiari F, Kidd JM, Chen K, Chinwalla A, Ding L, McLellan MD, Wallis JW, Hurles ME, Conrad DF, Walter K, Zhang Y, Gerstein MB, Snyder M, Abyzov A, Du J, Grubert F, Haraksingh R, Jee J, Khurana E, Lam HY, Leng J, Mu XJ, Urban AE, Zhang Z, Gibbs RA, Bainbridge M, Challis D, Coafra C, Dinh H, Kovar C, Lee S, Muzny D, Nazareth L, Reid J, Sabo A, Yu F, Yu J, Marth GT, Garrison EP, Indap A, Leong WF, Quinlan AR, Stewart C, Ward AN, Wu J, Cibulskis K, Fennell TJ, Gabriel SB, Garimella KV, Hartl C, Shefler E, Sougnez CL, Wilkinson J, Clark AG, Gravel S, Grubert F, Clarke L, Flicek P, Smith RE, Zheng-Bradley X, Sherry ST, Khouri HM, Paschall JE, Shumway MF, Xiao C, McVean GA, Katzman SJ, Abecasis GR, Mardis ER, Dooling D, Fulton L, Fulton R, Koboldt DC, Durbin RM, Balasubramaniam S, Coffey A, Keane TM, MacArthur DG, Palotie A, Scott C, Stalker J, Tyler-Smith C, Gerstein MB, Balasubramanian S, Chakravarti A, Knoppers BM, Abecasis GR, Bustamante CD, Gharani N, Gibbs RA, Jorde L, Kaye JS, Kent A, Li T, McGuire AL, McVean GA, Ossorio PN, Rotimi CN, Su Y, Toji LH, Tyler-Smith C, Brooks LD, Felsenfeld AL, McEwen JE, Abdallah A, Juenger CR, Clemm NC, Collins FS, Duncanson A, Green ED, Guyer MS, Peterson JL, Schafer AJ.

Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK. rd@sanger.ac.uk

Comment in:

Abstract

The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research.

PMID: 20981092 [PubMed - indexed for MEDLINE]
Related citations
Click here to read

8. Nature. 2010 Oct 28;467(7319):1050-1.

Genomics: In search of rare human variants.

Nielsen R< /a>.

Comment on:

PMID: 20981085 [PubMed - indexed for MEDLINE]
Related citations
Click here to read

9. Nature. 2010 Oct 28;467(7319):1026-7.

Human genome: Genomes by the thousand.

[No authors listed]
PMID: 20981067 [PubMed - indexed for MEDLINE]
Related citations
Click here to read

10. Nature. 2010 Oct 28;467(7319):1021.

Mountaintop mining plans close to defeat.

Gilbert N.
PMID: 20981066 [PubMed - indexed for MEDLINE]
Related citations
Click here to read

Tuesday, 14 December 2010

What's new for 'JKB_daily1' in PubMed

This message contains My NCBI what's new results from the National Center for Biotechnology Information (NCBI) at the U.S. National Library of Medicine (NLM).
Do not reply directly to this message.

Sender's message: Sepsis or genomics or altitude: JKB_daily1

Sent on Tuesday, 2010 Dec 14
Search (sepsis[MeSH Terms] OR septic shock[MeSH Terms] OR altitude[MeSH Terms] OR genomics[MeSH Terms] OR genetics[MeSH Terms] OR retrotransposons[MeSH Terms] OR macrophage[MeSH Terms]) AND ("2009/8/8"[Publication Date] : "3000"[Publication Date]) AND (("Science"[Journal] OR "Nature"[Journal] OR "The New England journal of medicine"[Journal] OR "Lancet"[Journal] OR "Nature genetics"[Journal] OR "Nature medicine"[Journal]) OR (Hume DA[Author] OR Baillie JK[Author] OR Faulkner, Geoffrey J[Author]))
Click here to view complete results in PubMed. (Results may change over time.)
To unsubscribe from these e-mail updates click here.



PubMed Results
Items 1 - 8 of 8

1. Nat Med. 2010 Nov;16(11):1215-7. Epub 2010 Sep 21.

The future of genetic research on neurodegeneration.

Van Broeckhoven C.

Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerpen, Belgium. christine.vanbroeckhoven@molgen.vib-ua.be

Abstract

Why, with all the progress in the field of neurodegeneration, do we still lack disease-modifying drugs that tackle the primary defect of severe cell loss? How much progress has been made toward this goal? Have we spent our time and resources wisely? And, most important, is there room for improvement? This commentary highlights several problems faced by researchers in studying the genetic etiology of neurodegenerative diseases and seeks to provide direction in overcoming some of these obstacles.

PMID: 21052076 [PubMed - indexed for MEDLINE]
Related citations
Click here to read

< tr>
2. Nat Med. 2010 Nov;16(11):1169.

Breakup of genetics advisory panel seen as premature.

Chi KR.
PMID: 21052050 [PubMed - indexed for MEDLINE]
Related citations
Click here to read

3. Science. 2010 Nov 5;330(6005):783-8.

Changing face of microglia.

Graeber MB.

Brai n and Mind Research Institute, University of Sydney, Camperdown, NSW 2050, Australia. manuel@graeber.net

Abstract

Microglia are resident brain cells that sense pathological tissue alterations. They can develop into brain macrophages and perform immunological functions. However, expression of immune proteins by microglia is not synonymous with inflammation, because these molecules can have central nervous system (CNS)-specific roles. Through their involvement in pain mechanisms, microglia also respond to external threats. Experimental studies support the idea that microglia have a role in the maintenance of synaptic integrity. Analogous to electricians, they are capable of removing defunct axon terminals, thereby helping neuronal connections to stay intact. Microglia in healthy CNS tissue do not qualify as macrophages, and their specific functions are beginning to be explored.

PMID: 21051630 [PubMed - indexed for MEDLINE]
Related citations
Click here to read

4. Lancet. 2010 Oct 30;376(9751):1457.

David Weatherall: Lasker Award for pioneer in molecular medicine.

Watts G.

geoff @scileg.freeserve.co.uk

PMID: 21036263 [PubMed - indexed for MEDLINE]
Related citations
Click here to read

5. Science. 2010 Nov 5;330(6005):841-5. Epub 2010 Oct 21.

Fate mapping analysis reveals that adult microglia derive from primitive macrophages.< /a>

Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M.

Department of Gene and Cell Medicine and the Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA. Florent_ginhoux@immunol.a-star.edu.sg

Comment in:

Abstract

Microglia are the resident macrophages of the central nervous system and are associated with the pathogenesis of many neurodegenerative and brain inflammatory diseases; however, the origin of adult microglia remains controversial. We show that postnatal hematopoietic progenitors do not significantly contribute to microglia homeostasis in the adult brain. In contrast to many macrophage populations, we show that microglia develop in mice that lack colony stimulating factor-1 (CSF-1) but are absent in CSF-1 receptor-deficient mice. In vivo lineage tracing studies established that adult microglia derive from primitive myeloid progenitors that arise before embryonic day 8. These results identify microglia as an ontogenically distinct population in the mononuclear phagocyte system and have implications for the use of embryonically derived microglial progenitors for the treatment of various brain disorders.

PMID: 20966214 [PubMed - indexed for MEDLINE]
Related citations
Click here to read

6. Nature. 2010 Oct 14;467(7317):779-81.

Biology without borders.

Schindel DE.

Consortium for the Barcode of Life, Washington DC, USA. schindeld@si.edu

PMID: 20944713 [PubMed - indexed for MEDLINE]
Related citations
Click here to read

7. Nature. 2010 Oct 14;467(7317):766-7.

Cancer-gene testing ramps up.

Callaway E.
PMID: 20944708 [PubMed - indexed for MEDLINE]
Related citations
Click here to read

8. Nature. 2010 Oct 14;467(7317):S4.

A runaway success.

Penzias AA.
PMID: 20944619 [PubMed - indexed for MEDLINE]
Related citations
Click here to read