Saturday, 20 July 2013

What's new for 'JKB_daily1' in PubMed

This message contains My NCBI what's new results from the National Center for Biotechnology Information (NCBI) at the U.S. National Library of Medicine (NLM).
Do not reply directly to this message.

Sender's message: Sepsis or genomics or altitude: JKB_daily1

Sent on Saturday, 2013 July 20
Search: (sepsis[MeSH Terms] OR septic shock[MeSH Terms] OR altitude[MeSH Terms] OR genomics[MeSH Terms] OR genetics[MeSH Terms] OR retrotransposons[MeSH Terms] OR macrophage[MeSH Terms]) AND ("2009/8/8"[Publication Date] : "3000"[Publication Date]) AND (("Science"[Journal] OR "Nature"[Journal] OR "The New England journal of medicine"[Journal] OR "Lancet"[Journal] OR "Nature genetics"[Journal] OR "Nature medicine"[Journal]) OR (Hume DA[Author] OR Baillie JK[Author] OR Faulkner, Geoffrey J[Author]))

View complete results in PubMed (results may change over time).

Edit saved search settings, or unsubscribe from these e-mail updates.


PubMed Results
Item 1 of 1

1. PLoS One. 2013;8(1):e54935. doi: 10.1371/journal.pone.0054935. Epub 2013 Jan 31.

The function of the conserved regulatory element within the second intron of the mammalian Csf1r locus.

Sauter KA, Bouhlel MA, O'Neal J, Sester DP, Tagoh H, Ingram RM, Pridans C, Bonifer C, Hume DA.

Developmental Biology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, United Kingdom.

Abstract

The gene encoding the receptor for macrophage colony-stimulating factor (CSF-1R) is expressed exclusively in cells of the myeloid lineages as well as trophoblasts. A conserved element in the second intron, Fms-Intronic Regulatory Element (FIRE), is essential for macrophage-specific transcription of the gene. However, the molecular details of how FIRE activity is regulated and how it impacts the Csf1r promoter have not been characterised. Here we show that agents that down-modulate Csf1r mRNA transcription regulated promoter activity altered the occupancy of key FIRE cis-acting elements including RUNX1, AP1, and Sp1 binding sites. We demonstrate that FIRE acts as an anti-sense promoter in macrophages and reversal of FIRE orientation within its native context greatly reduced enhancer activity in macrophages. Mutation of transcription initiation sites within FIRE also reduced transcription. These results demonstrate that FIRE is an orientation-specific transcribed enhancer element.

PMCID: PMC3561417 Free PMC Article
PMID: 23383005 [PubMed - indexed for MEDLINE]
Icon for Public Library of Science Icon for PubMed Central


0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home