What's new for 'JKB_daily1' in PubMed
This message contains My NCBI what's new results from the National Center for Biotechnology Information (NCBI) at the U.S. National Library of Medicine (NLM).
Do not reply directly to this message.
Sender's message: Sepsis or genomics or altitude: JKB_daily1
Sent on Friday, 2014 January 03Search: (sepsis[MeSH Terms] OR septic shock[MeSH Terms] OR altitude[MeSH Terms] OR genomics[MeSH Terms] OR genetics[MeSH Terms] OR retrotransposons[MeSH Terms] OR macrophage[MeSH Terms]) AND ("2009/8/8"[Publication Date] : "3000"[Publication Date]) AND (("Science"[Journal] OR "Nature"[Journal] OR "The New England journal of medicine"[Journal] OR "Lancet"[Journal] OR "Nature genetics"[Journal] OR "Nature medicine"[Journal]) OR (Hume DA[Author] OR Baillie JK[Author] OR Faulkner, Geoffrey J[Author]))
View complete results in PubMed (results may change over time).
Edit saved search settings, or unsubscribe from these e-mail updates.
PubMed Results |
1. | Nature. 2013 Nov 21;503(7476):342. doi: 10.1038/503342c.Heritability: Smarten up on intelligence genetics.Velden M.Author information: Comment on
|
PMID: 24256795 [PubMed - indexed for MEDLINE] | |
Related citations | |
![]() |
2. | Nature. 2013 Nov 21;503(7476):365-70. doi: 10.1038/nature12790. Epub 2013 Nov 13.Activated ClpP kills persisters and eradicates a chronic biofilm infection.Conlon BP, Nakayasu ES, Fleck LE, LaFleur MD, Isabella VM, Coleman K, Leonard SN, Smith RD, Adkins JN, Lewis K.Author information: Comment in
AbstractChronic infections are difficult to treat with antibiotics but are caused primarily by drug-sensitive pathogens. Dormant persister cells that are tolerant to killing by antibiotics are responsible for this apparent paradox. Persisters are phenotypic variants of normal cells and pathways leading to dormancy are redundant, making it challenging to develop anti-persister compounds. Biofilms shield persisters from the immune system, suggesting that an antibiotic for treating a chronic infection should be able to eradicate the infection on its own. We reasoned that a compound capable of corrupting a target in dormant cells will kill persisters. The acyldepsipeptide antibiotic (ADEP4) has been shown to activate the ClpP protease, resulting in death of growing cells. Here we show that ADEP4-activated ClpP becomes a fairly nonspecific protease and kills persisters by degrading over 400 proteins, forcing cells to self-digest. Null mutants of clpP arise with high probability, but combining ADEP4 with rifampicin produced complete eradication of Staphylococcus aureus biofilms in vitro and in a mouse model of a chronic infection. Our findings indicate a general principle for killing dormant cells-activation and corruption of a target, rather than conventional inhibition. Eradication of a biofilm in an animal model by activating a protease suggests a realistic path towards developing therapies to treat chronic infections. |
PMID: 24226776 [PubMed - indexed for MEDLINE] | |
Related citations | |
![]() |
3. | Nature. 2013 Nov 21;503(7476):352-3. doi: 10.1038/nature12707. Epub 2013 Nov 6.HIV: Slipping under the radar.Goff SP.Author information: Comment on |
PMID: 24196714 [PubMed - indexed for MEDLINE] | |
Related citations | |
![]() |
4. | Nature. 2013 Nov 21;503(7476):402-5. doi: 10.1038/nature12769. Epub 2013 Nov 6.HIV-1 evades innate immune recognition through specific cofactor recruitment.Rasaiyaah J, Tan CP, Fletcher AJ, Price AJ, Blondeau C, Hilditch L, Jacques DA, Selwood DL, James LC, Noursadeghi M, Towers GJ.Author information: Comment in
AbstractHuman immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages. |
PMID: 24196705 [PubMed - indexed for MEDLINE] | |
Related citations | |
![]() |
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home